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Abstract
Recently, a set of thermodynamic Bethe ansatz (TBA) equations has been
proposed by Dorey, Pocklington and Tateo for unitary minimal models
perturbed by the φ1,2 or φ2,1 operator. We examine their results in view of
the lattice analogues, dilute AL models in regimes 1 and 2. Taking M5,6 + φ1,2

and M3,4 + φ2,1 as the simplest examples, we will explicitly show that the
conjectured TBA equations can be recovered from the lattice model in a scaling
limit.

PACS numbers: 02.30.Ik, 05.50.+q

1. Introduction

Since the breakthrough in the integrable perturbation theory of CFT [1, 2], there has been a
lot of progress in the understanding of φ1,3 perturbation theory [3, 4]. On the other hand,
although the remarkable example, the Ising model in a magnetic field, was treated in [1], the
progress on the φ1,2 and φ2,1 perturbed theories has been steady but slow.

Systematic studies on the bootstrap procedure on the S matrix were initiated in [5] and
[6]. The latter approach, based on the scaling q-state Potts field theory, has been further
elaborated by Dorey et al [7]. Thanks to the Coleman–Thun mechanism, they argue that the
contributions from spurious poles cancel and conclude the closed set of S-matrices for a wide
range of parameters.

The check of the results against a finite-size system, however, suffers from the non-
diagonal nature of the scattering process. Due to the lack of a relevant string hypothesis, the
diagonalization of the transfer matrix is far from trivial. In [8], a set of thermodynamic Bethe
ansatz (TBA) equations is conjectured from consideration of special cases for which they
found similarity to the TBA for the sine–Gordon model. Roughly speaking, they proposed the
TBA by gluing the ‘breather–kink’ part and the ‘magnon’ part in which the latter originates
from the sine-Gordon model at specific coupling [9, 10]. Although the derivation is intuitive,
the resultant equations pass many non-trivial checks.
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In this report, we shall examine the problem in view of a solvable lattice model. As
a lattice analogue to ML,L+1 + φ1,2,ML+1,L+2 + φ2,1 we consider the L-state RSOS model
proposed in [11, 12], which will be referred to as the dilute AL model. There are several
pieces of evidence for this correspondence, the central charge [11], the scaling dimensions of
the leading perturbation [11, 13], universal ratios [14–16] and so on.

The question whether it shares the identical TBA to describe its finite-temperature (size)
property has not yet been fully answered. The purpose of this report is to present positive
evidence for this inquiry.

There are already a few examples demonstrating the equivalence. The common TBA of
the dilute A3 model at regime 2 and the M3,4 + φ1,2 case was first proved in [17]. The most
dominant solutions to the Bethe ansatz equation are explicitly identified in the form of the
‘string solution’, which leads to the famous E8 TBA. In the case L = 4, 6, corresponding to
the E7, E6 case, such explicit identification of string hypothesis seems not yet to be completed.

An alternative approach, based on the quantum transfer matrix (QTM) [18, 19], has been
successfully applied to L = 3, 4, 6 [20, 21]. The functional relations among properly chosen
QTMs play a fundamental role there and it enables to TBA to be derived without knowing the
explicit locations of dominant solutions to the Bethe ansatz equation.

For L = 3, 4, 6 cases, the underlying affine Lie algebraic structure (E8, E7, E6,
respectively) provides several clues in the investigation of the functional relations among
QTMs. The remaining case seems to lose a direct connection to affine Lie algebra in general
(see, however, exceptions [8]). It might thus be challenging to clarify the functional relation,
and thereby see if the Y-system in is actually recovered. In this report, we focus on the last
‘exceptional’ case (in the terminology of [8]) M5,6 for the φ1,2 perturbation, and the first
exceptional case M3,4 for the φ2,1 perturbation.

This paper is organized as follows. In the next section, we give a brief review of the
dilute AL models and the QTM method. Section 3 is devoted to the discussion of the dilute
A5 model at regime 2 which is expected to be a lattice analogue of the M5,6 + φ1,2 theory.
Fusion QTMs parametrized by skew Young diagrams are introduced and found to satisfy a set
of closed functional relations. It will be shown that the conjectured TBA is naturally derived
in a scaling limit. In the case of the dilute AL model, L even, a fundamental role seems to
be played by a ‘kink’ transfer matrix. As the simplest and the most well-known example, we
treat M3,4 + φ2,1, corresponding to the Ising model off critical temperature, in section 4. We
conclude the paper with a brief summary and discussion in section 5.

2. The dilute AL model and the quantum transfer matrix

The dilute AL model is proposed in [11] as an elliptic extension of the Izergin–Korepin
model [22]. The model is of the restricted SOS type with local variables ∈ {1, 2, . . . , L}. The
variables {a, b} on neighbouring sites should satisfy the adjacency condition, |a−b| � 1, which
is often described by a graph in figure 1. In [11], the RSOS weights, satisfying the Yang–Baxter
relation, have been found to be parametrized by the spectral parameter u and the elliptic nome q.
The crossing parameter λ needs to be a function of L for the restriction. The model exhibits
four different physical regimes depending on parameters:

• regime 1. 0 < u < 3 λ = πL
4(L + 1)

L � 2

• regime 2. 0 < u < 3 λ = π(L + 2)

4(L + 1)
L � 3

• regime 3. 3 − π
λ

< u < 0 λ = π(L + 2)

4(L + 1)
L � 3

• regime 4. 3 − π
λ

< u < 0 λ = πL
4(L + 1)

L � 2.
We are interested in regimes 1 and 2.
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Figure 1. An incidence diagram for the dilute A5 model. The local states corresponding to
connected nodes can be located at the nearest neighbour sites on a square lattice.

The central charge and scaling dimension associated with the leading perturbation
evaluated in [11, 13] suggests

• The dilute AL−1 model in regime 1 is an underlying lattice theory for ML,L+1 + φ2,1.
• The dilute AL model in regime 2 is an underlying lattice theory for ML,L+1 + φ1,2.

There is also further evidence supporting this correspondence, as mentioned in the introduction.
One can introduce an associated 1D quantum system with the above 2D classical model.

The Hamiltonian H1D for the former is defined from the row to row transfer matrix TRTR(u)

of the latter, by

H1D = ε
∂

∂u
log TRTR(u)|u=0.

We omit the explicit operator form of H1D. The parameter ε = −1 (1) labels regimes 1
and 2 (3 and 4).

The thermodynamics of the 1D quantum system is the central issue in the following. We
apply the method of QTM [18, 19] to this problem. Leaving details to the references, we list
the only relevant results for the following discussion.

A fundamental QTM is defined in a staggered manner

(TQTM(u, x))
{b}
{a} =

N/2∏
j=1

b2j−1

a2j−1

u + ix

b2j

a2j

a2j+1

a2j

u − ix

b2j+1

b2j

.

In the above, squares represent Boltzmann weights; four indices represent local variables and
the spectral parameters are specified inside them. The fictitious dimension N(even), sometimes
referred to as the Trotter number, is introduced. It has nothing to do with the real system size of
the original 1D system. The real system size will not appear in our discussion as the quantities
after taking the thermodynamic limit are of interest to us.

It is vital that two (spectral) parameters u, x exist and that only the latter concerns the
commutative property of QTMs, [TQTM(u, x), TQTM(u, x ′)] = 0. The remaining parameter u
plays the role of intertwining the finite Trotter number (N) system and the finite-temperature
system (β) by u = u∗ = −ε

β

N
. More concretely, the free energy per site is represented only

by the largest eigenvalue T1(u, x) of TQTM at x = 0 and u = u∗,

βf = − lim
N→∞

log T1(u
∗, x = 0).

The eigenvalue T1(u, x) takes the form

T1(u, x) = wφ

(
x +

3

2
i

)
φ

(
x +

1

2
i

)
Q

(
x − 5

2 i
)

Q
(
x − 1

2 i
)

+ φ

(
x +

3

2
i

)
φ

(
x − 3

2
i

)
Q

(
x − 3

2 i
)
Q

(
x + 3

2 i
)

Q
(
x − 1

2 i
)
Q

(
x + 1

2 i
)

+ w−1φ

(
x − 3

2
i

)
φ

(
x − 1

2
i

)
Q

(
x + 5

2 i
)

Q
(
x + 1

2 i
)
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Q(x) :=
N∏

j=1

h[x − xj ]

φ(x) :=
(

h
[
x +

(
3
2 − u

)
i
]
h

[
x − (

3
2 − u

)
i
]

h[2i]h[3i]

)N/2

h[x] := ϑ1(iλx) (1)

where w = exp
(
i π�
L+1

)
(� = 1 for the largest eigenvalue sector).

The parameters {xj } are solutions to the ‘Bethe ansatz equation’ (BAE),

w
φ(xj + i)

φ(xj − i)
= −Q(xj − i)Q(xj + 2i)

Q(xj + i)Q(xj − 2i)
j = 1, . . . , N. (2)

From now on we suppress the dependence on u which must be set as u = u∗.
It has been shown in many examples [23], that the functional relations among ‘generalized’

(fusion) QTMs offer a way to evaluate the free energy without precise knowledge of the
locations {xj }. We adopt the same strategy here and shall discuss the functional relations
realized among fusion QTMs of the dilute AL model below.

3. QTM associated with skew Young diagrams and quantum Jacobi–Trudi formula

We introduce fusion QTMs associated with Young diagrams. The idea of connecting Young
diagrams and (eigenvalues of) QTM, originated in [24–26], is very simple. Let three boxes
with letters 1, 2 and 3 represent the three terms in the eigenvalue of the QTM (1),

T1(x) = 1
x

+ 2
x

+ 3
x
.

Obviously, the eigenvalue of a fusion QTM can be represented by a summation of products
of ‘boxes’ with different letters and spectral parameters, over a certain set. The point is that
the set can be identified with semi-standard Young tableaux (SST) for sl3. We state the above
situation more precisely. Let µ and λ be a pair of Young tableaux satisfying µi � λi,∀i. We
subtract a diagram λ from µ, which is called a skew Young diagram µ − λ. The usual Young
diagram is the special case that λ is empty, and we will omit λ in the case hereafter. On each
diagram, the spectral parameter changes +2i from the left box to the right and −2i from the
top box to the bottom. We fix the spectral parameter associated with the right-top box to be
x + i(µ′

1 + µ1 − 2) (or equivalently the spectral parameter associated with the left-bottom box
to be x − i(µ′

1 + µ1 − 2)). Insert a letter �i,j to the (i, j)-th box such that the semi-standard
condition is satisfied. We denote its spectral parameter by xi,j . Then the product∏

i,j

�i,j
xi,j

is associated with the Young table. The summation over the tableaux satisfying the semi-
standard condition then defines

T ∨
µ/λ(x) =

∑
{�i,j }∈SST

∏
i,j

�i,j
xi,j

(3)

which is expected to be the eigenvalue of a fusion QTM.
The simplest subset of the above is the QTM based on Young diagrams of the rectangular

shape. It was shown [20] that any such QTM is proportional to a QTM corresponding to a
Young diagram of a shape 1 × m. The latter is associated to m-fold symmetric fusion. For
later convenience, we introduce a renormalized 1 × m fusion QTM Tm(x) by

Tm(x) = 1

fm(x)

∑
i1�i2�···�im

i1 i2 · · · im .
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The renormalization factor fm, common to tableaux of width m, is given by

fm(x) :=
m−1∏
j=1

φ

(
x ± i

(
2m − 1

2
− j

))
.

Hereafter, for any function f (x), we denote by f (x ± ia) the product f (x + ia)f (x − ia).
Then the resultant Tm are all degree 2N wrt h[x + shift], and have a periodicity due to

Boltzmann weights; Tm(x + P i) = Tm(x), where

P =
{

4(L+1)

L+2 for regime 2
4(L+1)

L
for regime 1.

(4)

Remarkably, Tm(x) enjoys a ‘duality’

Tm(x) =
{
T2L−1−m(x) m = 0, . . . , 2L for L even
T2L−1−m

(
x + P

2 i
)

m = 0, . . . , 2L for L odd .
(5)

This is deduced from the a
(2)
2 nature of the model and special choice of λ. We have at least

checked the validity numerically and assume their validity in this report. The above two
properties, the periodicity and the duality (5), play a fundamental role in the proof of the
closed functional relations.

The real usefulness of Tm(x) lies in the fact that any QTM associated with a skew Young
diagram can be represented in terms of their products.

Theorem 1. Let Tµ/λ(x) be a renormalized Tµ/λ(x) in (3) by a common factor,
∏µ′

1
j=1 fµj −λj

(x + i(µ′
1 − µ1 + µj + λj − 2j + 1)). Then the following equality holds.

Tµ/λ(x) = det1�j,k�µ1′(Tµj −λk−j+k(x + i(µ′
1 − µ1 + µj + λk − j − k + 1))) (6)

where Tm<0 := 0.

We regard this as a quantum analogue of the Jacobi–Trudi formula.
By this, apparently Tµ/λ(x) is an analytic function of x due to BAE, and contains the

quantity of our interest, T1(x), as a special case. The former assertion is not obvious from the
original definition by the tableaux, but it is trivial from the quantum Jacobi–Trudi formula.

In the same spirit, we introduce 	µ/λ(x), which is analytic under BAE,

	µ/λ(x) := Tµ/λ(x)/{Tm�2L(x) → 0}.
The pole-free property of 	µ/λ(x) is apparent from (6).

4. Dilute A5 model in regime 2 as a lattice analogue to M5,6 + φ1,2

For M5,6 + φ1,2, Dorey et al argued the existence of two kinds of particles, two kinks and four
breathers. For diagonalization of scattering theory, they introduced two magnons (massless
particles) in addition. Explicitly, the Y-system reads

YB1

(
x ± 3

14 i
) = 
B3(x) YB3

(
x ± 3

14 i
) = 
B1(x)
B5(x)

YB5

(
x ± 3

14 i
) = 
B3(x)
K2

(
x ± 2

14 i
)

K1(x)
1

(
x ± 1

14 i
)

2(x)

YB2

(
x ± 3

14 i
) = 
K1

(
x ± 2

14 i
)

1

(
x ± 1

14 i
)

K2(x)

YK2

(
x ± 1

14 i
) = 
B5(x)L(1)(x) YK1

(
x ± 1

14 i
) = 
B2(x)L(1)(x)

Y1
(
x ± 1

14 i
) = L2(x)LK2(x)LK1(x) Y2

(
x ± 1

14 i
) = L1(x)
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1

2

34

Figure 2. The nodes in the D4 Dynkin diagram are indexed in the above manner.

with

La(x) := 1

1 + 1
Ya(x)


a(x) := 1 + Ya(x)

where a takes one of B1, B3, . . . , 1, 2. (Y1, Y2 are written as Y (1), Y (2) in [18].)
We are not starting from Y but rather from the QTM. Corresponding to breathers, we

introduce ‘breather’ QTM by

TB1(x) := T1(x)

TB3(x) := 	(8,1)

(
x + 13

14 i
)/

φ
(
x − 12

7 i
)

TB5(x) := 	(15,8,8)/(7,7)(x)/φ
(
x ± 3

2 i
)

TB7(x) := 	(15,15,8,8)/(14,7,7)

(
x + 11

14 i
)/(

φ
(
x − 12

7 i
)
φ
(
x ± 9

7 i
))

TB2(x) := T7(x)

T (6)(x) := 	(8,7)/(6)

(
x + 25

14 i
)

then the following relations, referred to as the ‘breather’ T-system, hold

TB1

(
x ± 3

14 i
) = T0

(
x ± 11

14 i
)

+ φ
(
x − 12

7 i
)
TB3(x)

TB3

(
x ± 3

14 i
) = T0(x)T0

(
x ± 8

14 i
)

+ TB1(x)TB5(x)

TB5

(
x ± 3

14 i
) = T0

(
x ± 3

14 i
)
T0

(
x ± 5

14 i
)

+ TB3(x)TB7(x)

TB2

(
x ± 3

14 i
) = T0

(
x ± 1

14 i
)

+ T (6)(x)

where T0(x) = f2(x). They originate from the ‘hidden su(2)’ discussed in [27].
In contrast to the dilute A3 model (equivalently the E8 case), the ‘hidden su(2)’ structure

is not enough to obtain a closed set of functional relations. We then introduce another set of
functional relations, related to magnons.

With each node on the D4 Dynkin diagram (see figure 2), we associate t (a)
m (x) (a =

1, 2, 3, 4,m ∈ Z�0) and set t
(a)
0 (x) = 1. Then we impose a D4-related T-system among them,

in the terminology of [28],

t (a)
m

(
x ± i

14

)
= t

(a)
m−1(x)t

(a)
m+1(x) + g(a)

m (x)
∏
b∼a

t (b)
m (x) (7)

where g
(a)
1

(
x ± i

14

) = g
(a)
2 (x). In the above by b ∼ a, we mean that a and b are connected on

the Dynkin diagram.
Moreover we set an inhomogeneous truncation, t

(3)
3 = t

(4)
3 = 0 and put g

(3)
1 = g

(4)
1 = 1.

Unless one introduces some further condition, the set of functional relations (7) are not
closed, so cannot be solved. Then we demand
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t
(1)
3 (x) = t

(3)
2 (x) t

(2)
3 (x) = t

(3)
2 (x)TB3(x)

g
(1)
1 (x) = T0(x) g

(2)
1 (x) = T0

(
x ± 2i

7

)
.

The second relation glues the breather T-system to the D4-related T-system.
The above requirements seem to be rather artificial, but they lead to remarkable

consequences. First, solutions to (7) can be given in terms of QTM appearing in the dilute A5

model as follows:

t
(1)
1 (x) = T (6)(x) t

(2)
1 (x) = TB7(x)

t
(3)
1 (x) = 	(12,8,7)/(5,4)(x) t

(4)
1 (x) = 	(5,1)

(
x +

15

14
i

)/
φ

(
x − 13

2
i +

15

14
i

)
t
(1)
2 (x) = TB5(x)TB2

(
x ± i

7

)
t
(2)
2 (x) = TB5

(
x ± i

7

)
TB2(x)

t
(3)
2 (x) = TB5

(
x ± i

14

)
TB2

(
x ± i

14

)
t
(4)
2 (x) = TB5(x)TB2(x).

The proof of the above statement is too lengthy to reproduce here. We hope to present it
with the general discussion of L [29].

Second, the following combination of T and t solves the Y-system for M5,6 + φ1,2:

YB1(x) = φ
(
x − 12

7 i
)
TB3(x)

T0
(
x ± 11

14 i
) YB3(x) = TB1(x)TB5(x)

T0(x)T0
(
x ± 8

14 i
)

YB5(x) = TB3(x)TB7

T0
(
x ± 3

14 i
)
T0

(
x ± 5

14 i
) YB2(x) = T (6)(x)

T0
(
x ± 1

14 i
)

YK1(x) = t
(1)
2 (x)

t
(3)
1 (x)g

(1)
1 (x)

YK2(x) = t
(2)
2 (x)

t
(3)
1 (x)g

(2)
1 (x)

Y1(x) = t
(3)
2 (x)

t
(1)
1 (x)t

(2)
1 (x)t

(4)
1 (x)

Y2(x) = t
(4)
2 (x)

t
(3)
1 (x)

.

Third, the functions T, t, Y possess ‘nice’ analytic properties. Before stating the properties,
we need preparations. Note that the Y -system is invariant, for even N, if Y is replaced by Ỹ ,
defined by

ỸB1(x) =


YB1 (x)

κ

(
x±i(1+u′) 3

14

) for u < 0

YB1(x)κ
(
x ± i(1 − u′) 3

14

)
for u > 0

and all other cases, Ỹa = Ya . The parameter u′ stands for 14
3 u. This is due to the definition

of κ ,

κ(x) =
(

i
ϑ1

(
i 7

6πx, τ ′)
ϑ2

(
i 7

6πx, τ ′)
)N

which satisfies κ
(
x ± i 3

14

) = 1. The elliptic nome q ′ = exp(−τ ′), τ ′ = 4τ is introduced so
as to respect the periodicity of the Y function on the real direction of x. We denote a typical Ỹ

equation as

Ỹa(x ± iα) =
∏
b


b(x ± iγb)
∏

c

Lc(x ± iγc). (8)
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Our numerical data indicate that the RHS is analytic and nonzero in the strip Im x ∈
[−α, α]. Each element in the LHS also satisfies the same in appropriate strips, i.e., 
b(x) is
analytic and nonzero in the strip Im x ∈ [−γb, γb], and so on. These remarkable properties
enable us to solve the coupled algebraic equation, such as (8), in the Fourier space (to be
precise, its logarithmic derivatives). Then the inverse Fourier transformation leads to the
coupled integral equations which yield the explicit evaluation of log Ya(x).

To make a direct contact with the TBA result, three further steps are needed. First take
the Trotter limit N → ∞, uN = β (ε = −1). Second rewrite log 
b(x) by logLb(x). Third,
take a scaling limit. Step 1 is executable analytically, which manifests one of the advantages
of the present approach. The resultant equations no longer have dependence on a fictitious N
but only depend on the temperature variable, β. After step 2, we obtain the equations, in the
Fourier space,

M̂

l̂ogYB1

l̂ogYB3

...

 = 4πβ

1
0
...

 + K̂0

L̂B1

L̂B3

...


where L̂B1 = l̂og

(
1 + 1

YB1

)
and similarly for others. The quantities with a hat indicate that

they are Fourier transformations. M̂ and K̂0 are asymmetric matrices for which the explicit
forms are omitted here but can be easily obtained from the Y-system. The only first entry has
a non-vanishing inhomogeneous term in the RHS. This reflects the fact that only YB1 needs
some trivial renormalization so as to have nice analytic properties. By multiplying M−1 from
the left, the kernel matrix of TBA, M−1K0, turns out to be symmetric, remarkably. This
property is crucial in applying the dilogarithm technique to evaluate the central charge. The
inhomogeneous term vector 4πβM−1 · t (1, 0, · · ·) possesses six non-vanishing elements:

d̂B1 = 8πβ cosh 11
14k(

2 cosh 2
14k − 1

)
D(k)

d̂B3 = 4πβ
(
2 cosh 2

14k + 1
) (

2 cosh 4
14k − 1

)
D(k)

d̂B5 = 16πβ cosh 1
14k cosh 4

14k(
2 cosh 2

14k − 1
)
D(k)

d̂B2 = 8πβ cosh 1
14k(

2 cosh 2
14k − 1

)
D(k)

d̂K1 = 4πβ(
2 cosh 2

14k − 1
)
D(k)

d̂K2 = 8πβ cosh 4
14k(

2 cosh 2
14k − 1

)
D(k)

where we denote by d̂B1 the drive term associated with l̂ogYB1 and so on. A common
denominator D(k) denotes

D(k) = 2 cosh 12
14k + 2 cosh 10

14k − 2 cosh 6
14k − 2 cosh 4

14k + 1.

We finally perform step 3. In view of QFT, the bulk quantity is not of direct interest, rather
the fluctuation is. We introduce yB1(x) = YB1(x + τ ′′), for example, to evaluate quantities near
the ‘Fermi surface’ with τ ′′ = 12τ

7π
. Then take a limit q → 0 such that mkR = 8πβr

2 cos π
21 −1q

4
7 . By

r we mean the residue of i/D(k) at k = π/3i. Two quantities M−1 and K0 seem to carry the
information of S matrices; the elements of M−1K0 agree with the expression described in [8]
in terms of S matrices, under identification x = 3θ/π in the limit q → 0. The matrix M−1 also
encodes the information of the mass spectra. When taking the inverse Fourier transformation,
the nearest zero to the real axis, k = ±iπ

3 of D(k), is relevant in the ‘scaling’ limit as τ ′′ tends
to infinity. Applying the Poisson summation formula, we found a most dominant term

dK1(x) = 8πβr

2 cos π
21 − 1

e− 4
7 τ cosh

π

3
x = mKR cosh θ
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for example, where π
3 x = θ . Note that the relation mK ∝ q

4
7 is consistent with the scaling

dimension 
1,2 = 1
8 . One similarly verifies that all other drive terms also take the form

mR cosh θ and their mass ratios agree with those in [8]:

mB1 = 2mK cos 11
42π mB3 = 4mK cos 11

42π cos 3
42π

mB5 = 4mK cos 1
42π cos 4

42π mB2 = 2mK cos 1
42π.

mK2 = 2mK cos 4
42π

Thus the TBA of M5,6 + φ1,2 theory is recovered from the scaling limit of the dilute A5

model at regime 2.
Once Y is fixed by TBA, we can also evaluate the free energy from

T1
(
x ± 3

14 i
) = TB1

(
x ± 3

14 i
) = T0

(
x ± 11

14 i
)
(1 + YB1(x)).

It is readily shown that a ‘fluctuation’ part of the free energy f is proportional to
1
β2

∑
k

∫
mkR cosh θ log(1 + 1/yk) dθ , which is the desired expression.

5. Dilute A2 model in regime 1 as a lattice analogue to M3,4 + φ2,1

We treat another example corresponding to φ2,1 perturbation theory, the simplest and most
well-studied case, the Ising model off critical temperature, M3,4 +φ2,1. The model is described
by a free fermion, thus is rather trivial in a sense. In view of functional relations, however,
it is not trivial to derive the simplest Y-system Y

(
x ± i 3

2

) = 1 (in the present normalization
of x), from T1(x) in (1) which consists of three terms. This model is actually one of the
first examples, which require a more fundamental object than T1(x), a box, which seems to
correspond to a fundamental breather B1.

We define

τK(x) := wφ(x + 2i)
Q(x + 2i)

Q(x + i)
+ φ(x)

Q(x)Q(x + 3i)

Q(x + i)Q(x − i)
(9)

+w−1φ(x − 2i)
Q(x − 2i)

Q(x − i)
(10)

which has a property common to T1(x) namely, it is pole-free due to the BAE.
More importantly, we have functional relations,

τK

(
x ± 1

2
i

)
= T1(x) + T2(x) = 2T1(x) (11)

τK

(
x ± 3

2
i

)
= T3(x) + T0(x) − φ

(
x ± 5

2
i

)(
w3 +

1

w3

)
= 2

(
φ

(
x ± 1

2
i

)
+ φ

(
x ± 5

2
i

))
. (12)

The first equalities are directly verified by comparing both sides in the forms of the ratio
of Q functions. The second are consequences of the duality. One then reaches the desired
relation (12) after proper renormalizations. The first equation, (11), seems to suggest τK(x)

is related to the kink in the theory; the bound state of the kink produces a breather.
In the general L = even case, we find that τK(x) plays the most fundamental role, which

will be the topic of a separate publication.
It is a nice exercise to recover from (11) and (12) the free fermion free energy in the scaling

limit. We shall note the analytic property, supported by numerics, that τK(x) is analytic and
nonzero in the strip Im x ∈ [− 3

2 , 3
2

]
, for that purpose.
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6. Summary and discussion

In this report, we demonstrate explicitly that TBA for M5,6 + φ1,2 and M3,4 + φ2,1, conjectured
by Dorey et al, are realized in the scaling limit of lattice models. The crucial idea is to introduce
fusion transfer matrices associated with skew Young tableaux and to investigate the functional
relations among them. The proofs of functional relations are rather combinatorial and lengthy,
thus omitted due to the lack of space. They will be supplemented in the subsequent paper
which discusses the TBA behind the dilute AL models, L general [29].

There are still many open problems. The explicit identification of string solutions would
be definitely one of the most important. The complete study of this will shed some light on the
way to proceed for TBA in the case of perturbed non-unitary minimal models. We mention
the first step in this direction in [30].
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